EXPONENTIAL FUNCTIONS SUMMARY

Definitions:
$x^{0}=1$

Exponent Rules For $a \neq 0, b \neq 0$	
Product Rule	$a^{x} \times a^{y}=a^{x+y}$
Quotient Rule	$a^{x} \div a^{y}=a^{x-y}$
Power Rule	$\left(a^{x}\right)^{y}=a^{x y}$
Power of a Product Rule	$(a b)^{x}=a^{x} b^{x}$
Power of a Fraction Rule	$\left(\frac{a}{b}\right)^{x}=\frac{a^{x}}{b^{x}}$
Zero Exponent	$a^{0}=1$
Negative Exponent	$a^{-x}=\frac{1}{a^{x}}$
Fractional Exponent	$a^{\frac{x}{y}}=\sqrt[y]{a^{x}}$

$$
y=2^{x}
$$

Reflected over
up $1 / x$ axis
$y=1-2^{x}$ look like?

All of the transformations that you learned apply to all functions, so what would the graph of $y=2^{x}+3$

$$
Y=-2\left(3^{(x-4)}\right)+5
$$

- Flips on x-axis

2 amplifies by 2
4 shifts right 4 on x-axis
5 shifts up 5 on y-axis
When in doubt, graph it out.
Negative exponent - take reciprocal + post exp

Insert complete the square with coefficient

Insert example of fraction roots to factored form

